# List of compounds nominated to be detected according to bulk explosive recognition guide including homemade explosives (HME)

# As proven at EDA Meeting:

# SOKKS products can be applied as universal training aids



### **Compounds detected by SOKKS explosive conditioned canines**

(please see comments below the table) by Prof Dr Wolf A Kafka wolf.kafka@t-online.de

|   | Name               | Synonyms                                                                                                                                                                                                                      | Formula   | Structure                                                      | CAS       |
|---|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------------------------------------------|-----------|
| x | TNT                | <b>2-Methyl-1,3,5-trinitrobenzene</b> , 2,4,6-Trinitrotoluol, Trinitrotoluen, 2-Methyl-1,3,5-trinitrobenzol, 2-Methyl-1,3,5-trinitrobenzen (IUPAC), 1-Methyl-2,4,6-trinitrobenzol, TNT, Trotyl, AN, Tol, Tolit, Tritol, Tutol | C7H5N3O6  | O <sub>2</sub> N NO <sub>2</sub> NO <sub>2</sub>               | 118-96-7  |
| x | Pentrite           | Nitropenta, Pentaerythrityltetranitrat (INN), 1,3- Bis(nitryloxy)-2,2-bis(nitryloxy- methyl)-propan (IUPAC), Pentaerythrittetranitrat, Pentaerythritoltetranitrat, PETN                                                       | C5H8N4O12 |                                                                | 78-11-5   |
| x | Hexogene           | Cyclotrimethylentrinitramin,<br>Cyclonit, T4 und RDX, Perhydro-1,3,5-<br>trinitro-1,3,5-triazin, Hexahydro-1,3,5-<br>trinitro-1,3,5-triazin,<br>Cyclotrimethylentrinitramin,<br>Cyclonit, RDX, T4                             | C3H6N6O6  | NO <sub>2</sub><br>N<br>N<br>N <sub>N</sub><br>NO <sub>2</sub> | 121-82-4  |
| x | Octogene           | Cyclotetramethylentetranitramin,<br>Cyclotetramethylentetranitramin,<br>HMX, LX 14-0, HW 4                                                                                                                                    | C4H8N8O8  | 0 N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-                       | 2691-41-0 |
| x | Nitrat<br>Ammonium | Ammoniumnitrat, Ammonsalpeter,<br>Ammoniaksalpeter, brennbarer<br>Salpeter, salpetersaures Ammonium,<br>Ammonnitrat, Ammonium nitricum                                                                                        | H4N2O3    |                                                                | 6484-52-2 |
| х | Nitrocellulose     | <b>Cellulosenitrat</b> , Nitrozellulose,<br>Schießbaumwolle, Blitzwatte                                                                                                                                                       | C6H7O11N3 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                          | 9004-70-0 |
| x | Nitroglycerine     | Propan-1,2,3-triyltrinitrat (IUPAC), Trisalpetersäureglycerinester, Glyceryltrinitrat, Trisalpetersäureglycerinester, Trisalpetersäurepropan-1,2,3- triolester, Blasting oil, Glycerinum trinitricum, Trinitroglycerol        | C3H5N3O9  | $O_2N$ $O_2$ $O_2N$ $O_2$ $O_2N$                               | 55-63-0   |

| x | Poudre Noire             | Kaliumnitrat + (selten) Natriumnitrat, Salpeter, Kalisalpeter, E 252,                                                                                                          | KNO3(+NaNO<br>3) | $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}^{-}$                                       |            |
|---|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------------------------------------------------------|------------|
| x | Nitrate<br>Potassium     |                                                                                                                                                                                | NaNO3            |                                                                                       |            |
| х | Nitrate<br>Sodium        |                                                                                                                                                                                | KNO3             |                                                                                       |            |
|   | Perchlorate<br>D´Amonium |                                                                                                                                                                                | NH4ClO4          | H O O                                                                                 | 7790-98-9  |
| x | chlorate de<br>sodium    |                                                                                                                                                                                | NaClO3           | o   Ĉ                                                                                 | 7775-09-9  |
|   | chlorate de<br>potassium |                                                                                                                                                                                | KCIO3            | 0=\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                                | 09.04.3811 |
|   | Nitrate de<br>Methylene  |                                                                                                                                                                                | CH3NO3           | H <sub>3</sub> C N O                                                                  | 598-58-3   |
|   | Nitrate de<br>U'uree     | AHL, farblose flüssige Mischung aus<br>Ammoniumnitrat, Harnstoff und<br>Wasser. 7 % Nitratstickstoff, 7 %<br>Ammoniumstickstoff und 14 %<br>Amidstickstoff (aus dem Harnstoff) | H4N2O3           |                                                                                       |            |
|   | Tetryl                   | N-Methyl-N-2,4,6-tetranitroanilin,<br>CE, N-Methyl-N-2,4,6-<br>tetranitroanilin,<br>Trinitrophenylmethylnitramin,<br>Methylpikrylnitramin, Tetralit                            | C7H5N5O8         | O <sub>2</sub> N. N. CH <sub>3</sub> O <sub>2</sub> N NO <sub>2</sub> NO <sub>2</sub> | 479-45-8   |
|   | Dinitrotoluol            | 2,4-Dinitromethylbenzene, 2,4-Dinitromethylbenzen, 2,4-DNT, Methyldinitrobenzo, Binitrotoluol                                                                                  | C7H6N2O4         | CH <sub>3</sub> NO <sub>2</sub>                                                       | 121-14-2   |
|   | Melinite                 | <b>Pikrinsäure, 2,4,6-Trinitrophenol (TNP)</b> , 2,4,6-Trinitrophenol, Trinitrophenol, TNP, Weltersches Bitter                                                                 | C6H3N3O7         | $O_2N$ $NO_2$ $NO_2$                                                                  | 88-89-1    |

Acetonperoxid (APEX), IUPAC: 3,3,6,6,9,9-Hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexamethyl-1,2,4,5,7,8-hexa

hexaoxonan (Trimer), trimeres

Acetonperoxid, dimeres C6H12O4
Acetonperoxid, Triacetontriperoxid (Dimer),
(TATP), Tricycloacetonperoxid C9H18O6

(TCAP), IUPAC: 3,3,6,6-Tetramethyl-1,2,4,5-tetraoxan (Dimer), 3,3,6,6,9,9-

Hexamethyl- 1,2,4,5,7,8-hexaoxacyclononan

H<sub>3</sub>C O-O CH<sub>3</sub> 1073-91-2 H<sub>3</sub>C CH<sub>3</sub> (Dimer) 17088-37-8 H<sub>3</sub>C CH<sub>3</sub> (Trimer)

Hexamethylentriperoxiddiamin, 1,6-

**HMDT\*** Diaza-3,4,8,9,12,13-hexaoxa

bicyclo[4.4.4]tetradecan (IUPAC)

C6H12N2O6 283-66-9

Note:

TATP\*

Compounds marked by x belong to relevant military explosives, as listed within the internal SOKKS instructions. However, as reported by different users, SOKKS conditioned canines detect at least all of the listed by Munitique DEVIS

(Trimer)

Whilst contamination/purity is open in compounds offered by Munitique DEVIS SOKKS products are based on high level purity compounds.

Handling of compounds in g units (merely spoon full amounts as offered - at very high price levels - by Munitique DEVIS) are of less practical value: Contamination of hiding places, loss of material, etc.

For examinations under "real" field-conditions it seems therefore advantageous to apply explosive-asservates commonly applied in industrie and military operations.

#### In addition:

Examples of further primary high explosives - most of them not in the list offered by Munitique DEVIS - are detected by SOKKS conditioned canines (personal army reports).

#### Note in addition:

SOKKS explosive conditioning material is also directed for the detection of TATP (= APEX) (trimeric Acetonperoxide) by SOKKS explosive conditioned dogs.

This has been confirmed by military and police sectors (including the GIGN). Since handling of "sharpened" (= dried from water) TAPT is extremely impact-, touch and heat sensitive, it is still open, however, of whether the dogs detected TAPT or its precursors.

On base of this, TATP production will commonly be "started" shortly before application by mixing up the appropriate starting materials (for example: [acetone + hydrochloric acid] + hydrogen peroxide).

This may be seen to be confirmed by the fact that the terrorists in Brussels insisted on carrying their bags by themselves into the taxi. (It seems to be proven that terrorists used TAPT in Brussels and also in Paris).

Nevertheless SOKKS explosive conditioned dogs should detect as well "sharp" TAPT as TAPT in precursor state.

Recently developed technical TAPT sensors (based on differential micro-weight measurements of TATP-molecules annealed to specially pretreated surfaces), however, up to now, they do not reach the sensitivity of the dog's nose.

#### Chemicals::

- Acetone 50 % (conc.)
   Hydrogenperoxide 50 % (30 %)
- hydrochloric acid 30 % from total volume (32 %)
- Cooling bath (for the conservation of 0 oC reaction temperature)
- Water for washing

#### Implementation:

- acetone and hydrochloric acid unite with stirring and at 0 degrees Celsius
- Slowly add hydrogen peroxide
- Acetone precipitates white

#### Special instructions:

- Fabric sublimated; difficult to ensure safe storage; drives plug from reservoir (bottle)
- must be dry to explode; soaked by the fuse
- by sublimation is increased, the water concentration
- remaining hydrochloric acid within the material leads to the development of heat during wrapping in aluminum foil

## **Explosives most relevant for the** German Bundespolizei

#### **Explosives**

| Trade name          | Ch   |  |
|---------------------|------|--|
| Ammongelit          | Am   |  |
| Ammonsalpeter       | Am   |  |
| Hexogen (RDX)       | Cyc  |  |
| Kaliumchlorat       | Kal  |  |
| Kalisalpeter        | Kal  |  |
| Natriumchlorat      | Soc  |  |
| Nitroglycerin       | Trin |  |
| Nitropenta (PETN)   | Per  |  |
| Nitrozellulose (NC) |      |  |
| Oktogen             | Cwc  |  |

#### Blackpowder Treibladungspulver Trinitrotoluol (TNT)

| Chemical nomenclature        |
|------------------------------|
| Ammoniumnitrat + Nitroglycol |
| Ammoniumnitrat               |
| Cyclotrimethylen-trinitramin |
| Kaliumchlorat                |
| Kalliumnitrat                |
| Sodium Chlorat               |
| Trinitroglycerin             |
|                              |

ntaerythritol tetranitrat

| Cyclotetramethylentetranitramin HMX    |
|----------------------------------------|
| Kaliumnitrat + Schwefel + Holzkohle    |
| Nitrozellulose + -glycerin + -guanidin |
| 2,4,6-Trinitrotoluol                   |

#### Molecules \*1010/cm3 formula NH4NO3+CsH4N2O6

| 700000000 |  |
|-----------|--|
| 70000000  |  |
| 40        |  |
| 100000    |  |
| 10000     |  |
| 100000    |  |
| 70000000  |  |
| 100       |  |
| 30        |  |

400000

KNO<sub>3</sub> NaClO<sub>1</sub> C3H5N3O9 C,H,N,O12 1 C<sub>4</sub>H<sub>8</sub>N<sub>8</sub>O<sub>8</sub> 10000

KNO<sub>3</sub>+5+C CH,H,N,O.

NH<sub>4</sub>NO<sub>8</sub> C<sub>2</sub>H<sub>8</sub>N<sub>8</sub>O<sub>6</sub> KCIO,

Explosives: Molecules\*1010/cm3 ppm-values (Meyer, 1985 & EMC, Consulting Services Dr Hoffmann, Schramberg) due to calculations via Loschmidt-Konstant (N=2,686\*10<sup>25</sup>/m<sup>3</sup>). e.g. 1 Molecule Octogen in 10<sup>9</sup> Molecules air. SOKKSexplosive Material is nearly ca. x10000 less down!

A detecting dog would thus detect a dilution factor of 1 to 1013, he would detect 1 ml octogen in an air volume of a big lake 20x20x0,07 km.

#### Additional examples of primary high explosives are:

Acetone peroxide

Ammonium permanganate

Azo-clathrates

Chlorine azide

Copper acetylide

Cyanogen azide

Diazodinitrophenol

Dichlorine heptoxide

Disulfur dinitride

Hexamethylene triperoxide diamine Lead azide

Hypofluorous acid

Lead styphnate

Lead picrate[4]

Mercury(II) fulminate

Nitrogen trichloride

Nitrogen triiodide

Nitroglycerin

Octaazacubane

Silver azide

Silver acetylide

Silver fulminate

Sodium azide

Tetraamine copper complexes Tetraazidomethane

Tetrazine

Tetranitratoxycarbon

**Tetrazoles** 

Xenon oxytetrafluoride

Xenon tetroxide

Xenon trioxide